Biology and environmental factors affecting population dynamics and management of California red scale (*Aonidiella aurantii*)

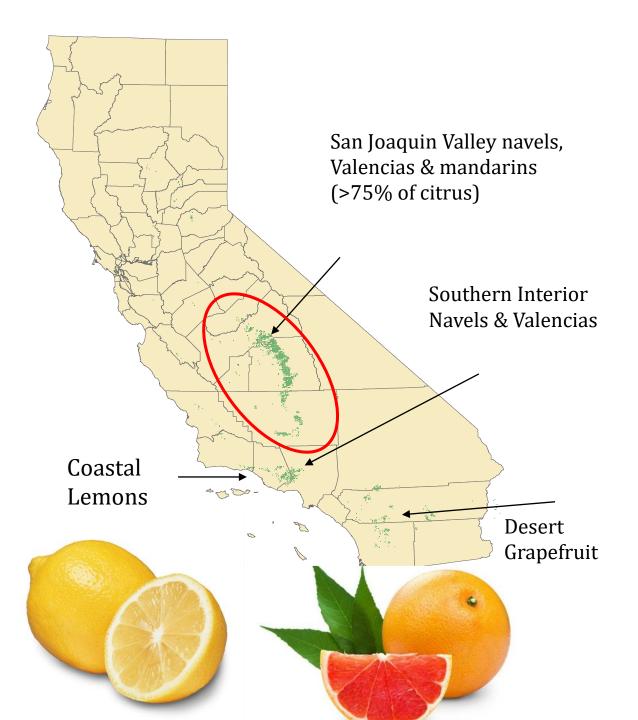
Sandipa Gautam, Ph.D. Area Citrus IPM Advisor

2023 Citriculture Conference November 29, Santiago, Chile

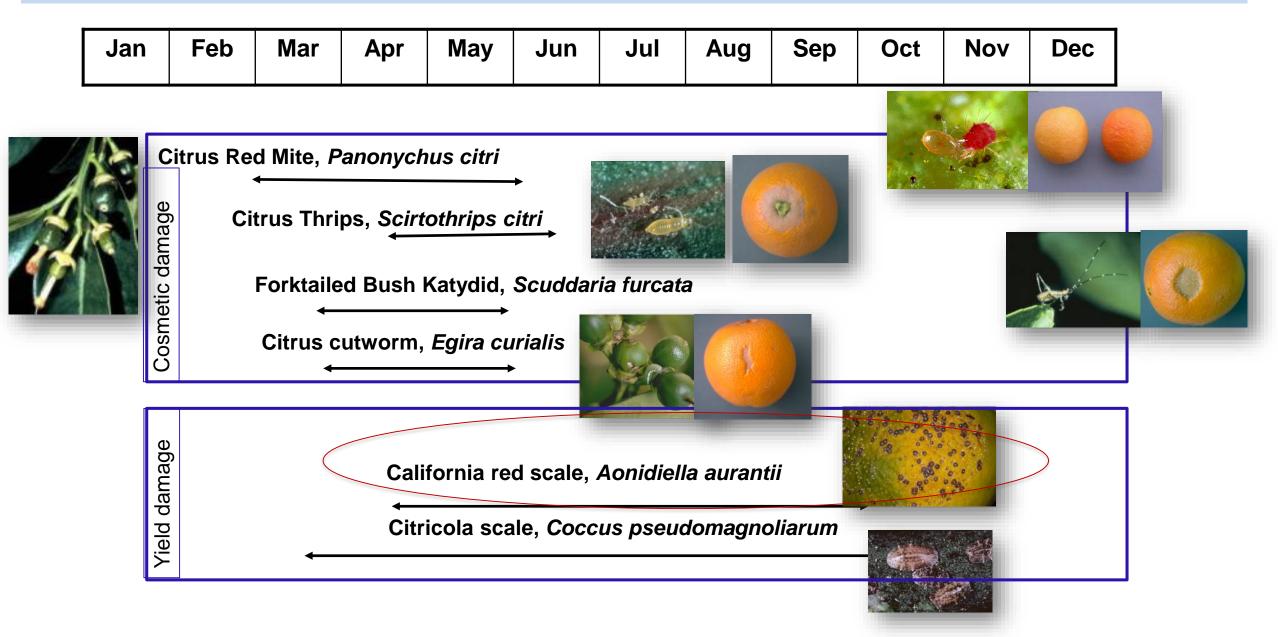
UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Outline

- Background
- California red scale
 - Biology
 - Environmental factors affecting seasonal phenology
 - Management
 - Monitoring
 - Current Management Practices

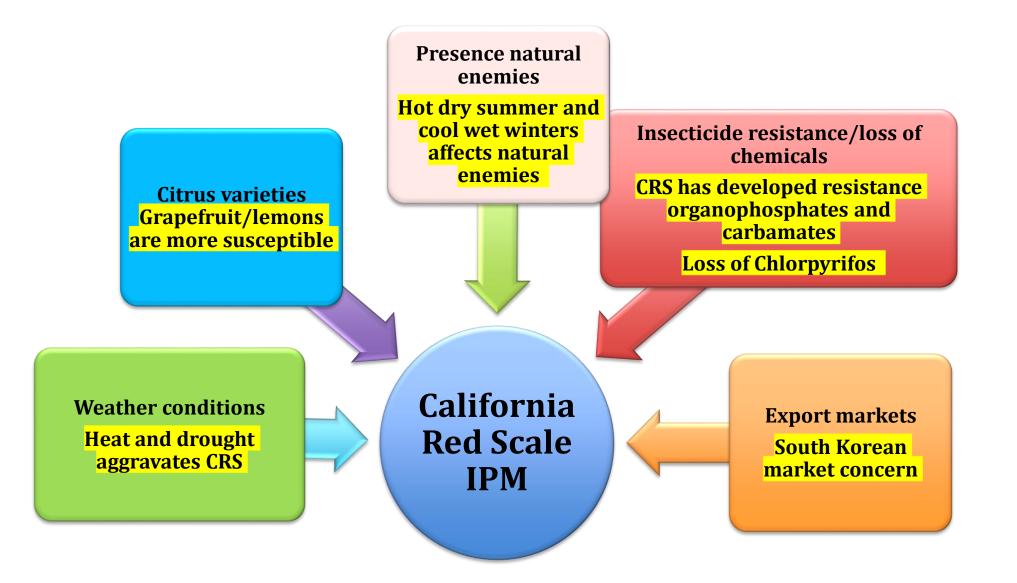


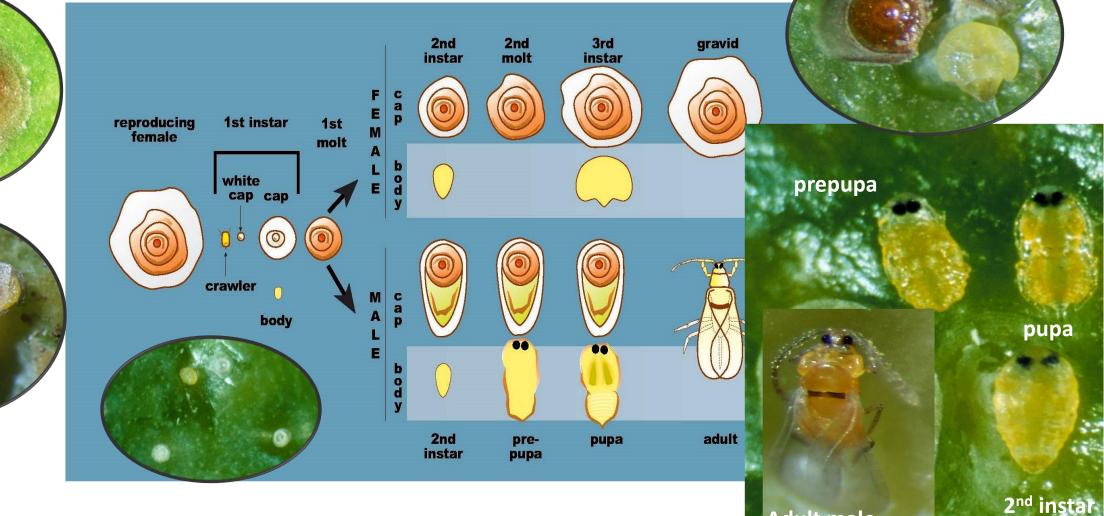
California Citrus


- Four distinct citrus growing regions
- 268,376 acres citrus in CA (108,608 hectares)
- Orange (navel/Valencia), lemon, grapefruit, mandarin, lime
- \$3.4 billion farm gate value; economic impact on California's economy: \$7.1 billion

Citrus Pest Management Navels & Mandarins

California Red Scale *Aonidiella aurantii*

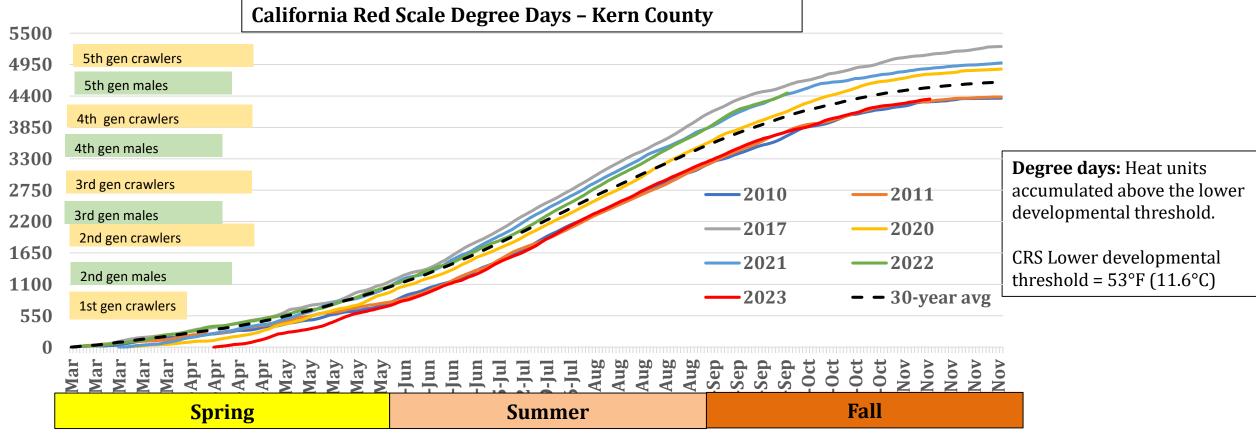

- Sap-sucking insect
- Attacks all parts of trees including fruit
- Downgrading of fruit and yield loss
- Export issue in Korea



Pest management program shifts/evolves along with the factors influencing it.

California red scale biology and life cycle

Adult male


California red scale biology/field ecology

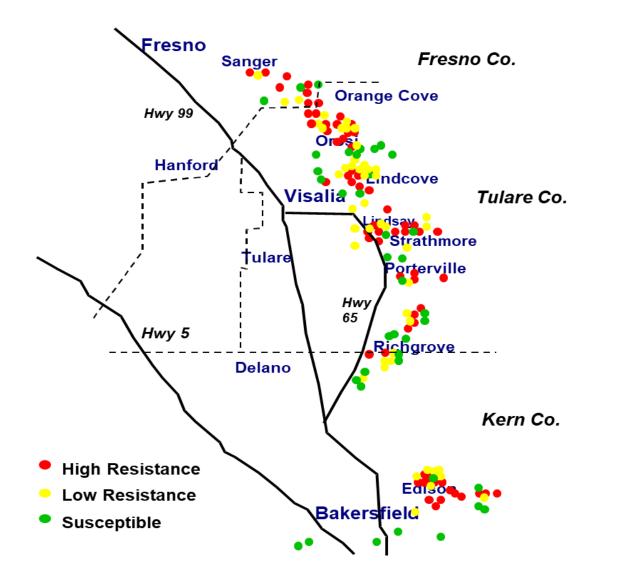
- Under laboratory conditions, life cycle is completed within 6 weeks.
- In field, California red scale normally has 4 generations in a year
- Field season begins with overwintering females producing crawlers that develop with temperature
- CRS monitoring is based on male flights and degree days (heat units above the lower developmental threshold)
- Growers/pest control advisors monitor populations and treat when the population is most responsive

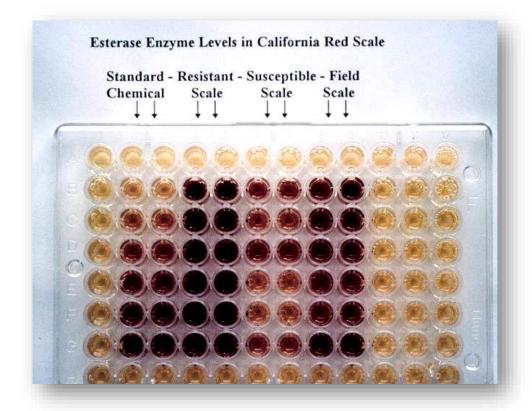
Why are there so many scales from 2012-2022?

- 1. Warm winter = insects of all stages developing at all times, less overwintering mortality
- 2. Drought = dusty, stressed trees have more scale, parasites don't work as well
- 3. Heat = fast development of scale, the parasites don't keep up
- 4. Insecticide treatments only last about 1 generation –growers treat often=resistance
- 5. Some insecticides don't control scales on wood (imidacloprid, spirotetramat)

Warmer weather in the last decade has affected seasonal phenology of CRS.

CRS Male Flight 2001 to 2023							
Year	Biofix	F1	F2	F3	F4	Total degree days	
2001	3/20	6/5	7/31	8/30	10/22	4696	
2002	3/21	6/12	7/24	9/6	No Gen 4	4292	
2003	3/12	6/14	7/25	9/2	10/26	4596	
2004	3/15	6/3	7/18	8/28	11/23	4433	
2005	3/22	6/12	7/21	8/26	No Gen 4	4201	
2006	4/11	6/17	7/23	9/2	No Gen 4	4179	
2007	3/14	6/10	7/22	8/31	12/5	4412	
2008	3/17	6/17	7/26	9/5	11/19	4448	
2009	3/23			9/1	11/27	4429	
2010	3/30		8/7		No Gen 4	4008	
2011	4/1	6/27	8/8		No Gen 4	4073	
2012	4/6	6/16	-	9/7	11/21	4499	
2013	3/15	6/4	7/15	8/25	10/29	4609	
2014	3/10	6/4	7/12	8/23	10/9	4959	
2015	3/2	6/2	7/8	8/21	10/9	4866	
2016	2/24	5/31	7/11	8/21	10/15	4766	
2017	3/15	6/4	7/15	8/16	9/26	5174	
2018	3/13	6/4	7/19	8/19	10/4	4991	
2019	3/19	6/6		8/24	9/30	4838	
2020	2/28	5/30	7/11	8/18	9/25	5137	
2021	3/19	6/3	7/16	8/14	9/25	5064	
2022	3/4	6/3	7/26		9/27	5136	
2023	4/11	6/15	8/22	9/2	11/8		


Coolest


Warmest

Year with 5th generation crawlers 4950 degree days after the biofix

Six out of 10 years in the last decade had an extra generation (incomplete).

CRS populations in California have developed resistance to organophosphates and carbamates.

Populations of CRS resistant to OP insecticides have high esterase enzyme levels

Grafton-Cardwell et al. 1998

CRS IPM in California

- Pest Monitoring and treatment decisions
 - Monitoring using pheromone cards
 - -Degree days to predict next life event
- Management
 - -Mating disruption Checkmate
 - –Biological control Aphytis melinus, Comperiella
 - Chemical control IGRs, Spiroteramat, Pyriproxifen

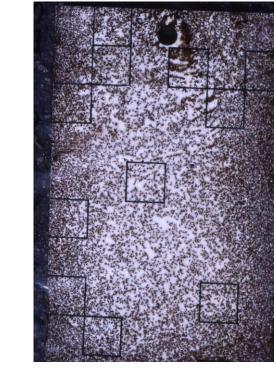
Monitoring CRS populations

- Males: Pheromone traps predict successive generations based on degree-day accumulation.
- Crawler tapes: target crawlers
- Leaf/twig: All life stages during the season
- Percent infested fruit at harvest/ 4th male flight next season

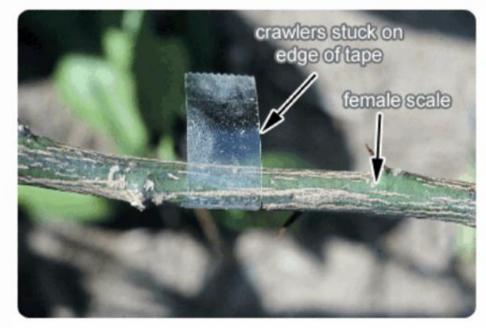

Crawler tape

During the season, check leaf/twig for live scales

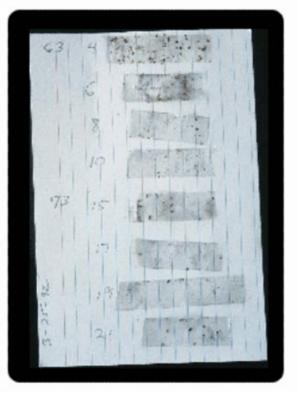



The squares represent 20% of the

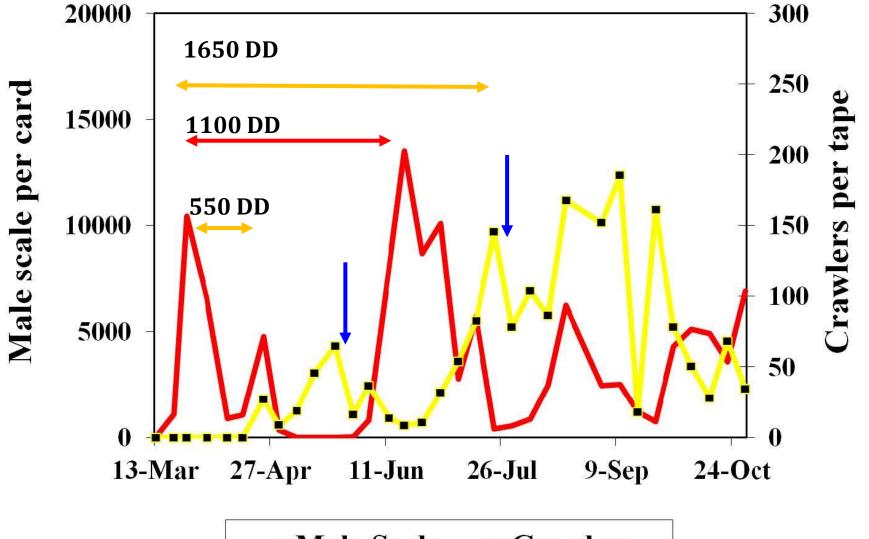
At harvest, estimate % fruit with >10 scales


The squares represent 20% of the card - you count what is inside the squares on both sides and multiply x 5 to estimate the total number

Threshold varies as season progresses and with management program.


- Conventional program/4th flight: 1000 scales/card
- Mating disruption/4th flight: 50 scales/card

Catching crawlers



The crawler stage can be trapped using double sticky tape wrapped around a branch that has one or more live females on it. The tapes can be replaced weekly to find out when crawler emergence is occurring.

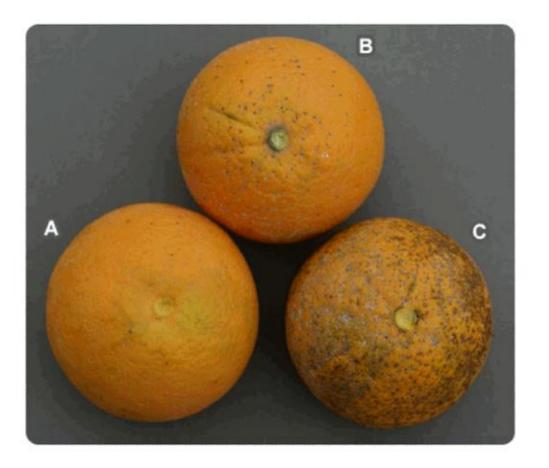
The tapes can be replaced once a week and examined for crawlers with a hand lens or microscope.

Degree days = accumulation of the average daily temperature above the lower developmental threshold (53°F)

Calculating degree days (DD)

- Lower developmental threshold for CRS is 11.6°C (50°F)
- Any temperature accumulation above the LDT counts towards DD.

	Spring temp (°F)	Summer temp (°F)
High	77	105
Low	45	83
Average daily temp	61 = (77 + 45)/2	94 = (105 + 83)/2
Degree days	8 = 61- 53	41 = 94-53
No. days from males to crawlers (i.e., 550 DD)	69 days (9.8 weeks)	14 days (2 weeks)


In summer things are happening very fast. Quick action is needed.

During the season: check leaves and twigs and the wood for live scale

- Is the scale just on the dusty roads or throughout the orchard? (edge effect)
- Look at the interior and tops of the tree to see if scale is building there (improve coverage)
- Rub your thumb lightly over the scales and see if they easily rub off (get to know live vs dead scale)
- One month after treatment, take samples back to the office and look closely at 2nds and 3rds to see if they are healthy or parasitized (is biocontrol helping?)

Prepare in advance for the next season

Walk the block and check fruit for live scale At harvest check bins of fruit

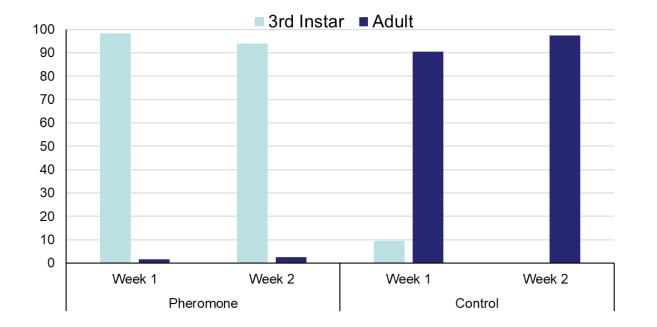
Estimate the % of fruit with >10 scales

If you find more than 5% of fruit infested, the block likely needs a treatment next year

When to treat – making decisions?

- Pheromone cards & Degree Days to watch populations
 - Weekly basis, or before 4th flight
 - **IGRs and pheromones** few male scales on the card, > CRS populations.
 - *Aphytis* and Spirotetramat More male scales on card, but less CRS population.
- Leaf/twig sampling
 - Where is the scale? sample edge (edge effect), interior and top
 - Are the scales live? rub your thumb lightly over the scales
 - Evaluate after the treatment dead, healthy, or parasitized
- Planning for the next season
 - 4th flight ≥1000 males/trap = treatment needed (where mating disruption is a part of IPM, 50 males/trap)
 - Estimate the % fruit with >10 scales (\geq 5% infested = treatment in next season)

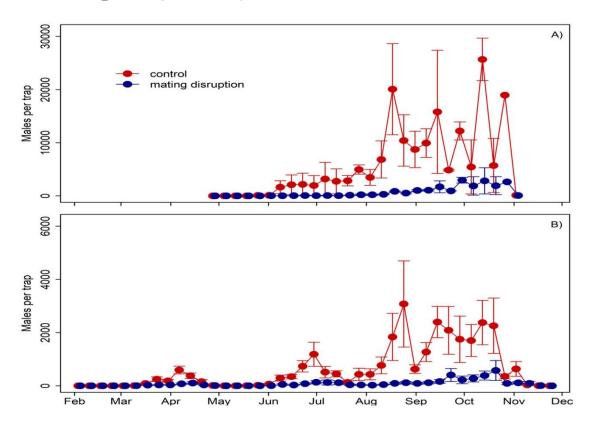
California red scale management choices – UCIPM Guidelines

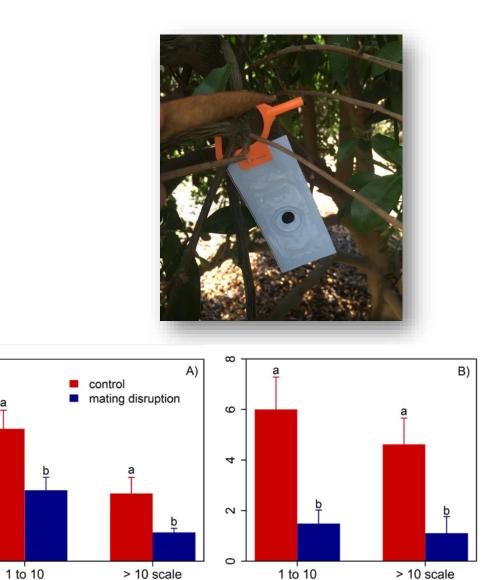

Management choices	Efficacy	Selectivity	Spectrum
Mating disruption (Checkmate CRS)	Moderate: Effectiveness varies	Nontoxic	Narrow: CRS
Aphytis melinus	Moderate: effectiveness varies	Nontoxic	Narrow: CRS
Oils (415, omni)	Moderate: short residual	Short term effect on all arthropods	Broad: most pests
Esteem (Pyriproxyfen)	Moderate: Emerging resistance issues	Toxic to beetles	Narrow: CRS
Centaur (Buprofezin)	Moderate	Toxic to beetles	Interm: CRS, Citricola
Movento (Spirotetramat)	Moderate: Doesn't control scale on wood	Toxic to predatory mites	Interm: CRS, ACP
Sevin (Carbaryl)	Moderate: Resistance issues	Toxic to most natural enemies	Broad; CRS, Citricola scale, FRB

Mating disruption for CRS

Female scales in the presence of pheromone disruption:

- If they never mate, they don't produce crawlers
- If they mate late in life, they produce fewer scales
- If they mate late in life, they produce mostly males
- If they remain 3rd instars, they are more vulnerable to *Aphytis*





Product: Suterra CheckMate CRS®

- Mating disruption (180 dispenser/acre)
- 2 orchards in 2016-17, 10 in 2018-19
- After 1st male flight (2016) after 1st male flight (2018)

24

20

16

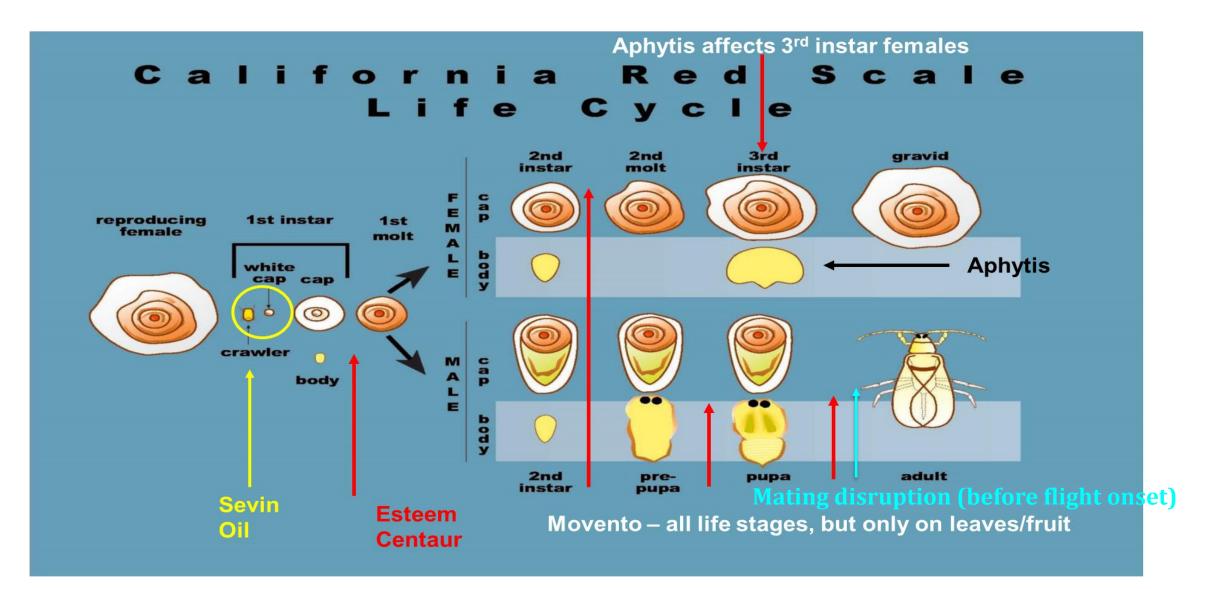
12

α

Percent fruit infestation

Percentage of fruit

Aphytis Pesticide Selectivity



	MOA	Parasites	Predatory mites	Predatory beetles
OPS and Carb	1a,b	Rate dependent	Resistant	resistant
Pyrethroids	3	Тохіс	Toxic	Toxic
Admire Pro, Assail, Actara (Neonicotinoids)	4a	Toxic	Toxic	Toxic
Sivanto (flupyradifurone)	4d	Тохіс	Soft	Egg production
Esteem (Pyriproxifen)	7c	Soft	Soft	Toxic
Entrust/Success (Spinosad)	5	Soft	Soft	Soft
Delegate (Spinetoram)	5	Toxic	Soft	Egg production
Agri-Mek (Avermectin)	6	Soft	Toxic	Soft
Micromite (Diflubenzuron)	15	Soft	Soft	?
Centaur/Applaud (Buprofezin)	16	Soft	Soft	Toxic
Fujimite, Nexter (Fenpyroximate)	21a	Toxic	Toxic	Egg production
Movento (Spirotetramat)	23	Soft	Toxic	Soft
Exirel (Cyantraniprole)	28	Soft	Soft	Egg production

How to use life cycle for making pest management choices?

All management choices should target first or second generation.

Best Management Practices: California Red Scale

- Weather affects populations, monitor and predict next life event
- Treatment Timing: Target early generations (1st and 2nd)
 - Mating disruption: Prior to the beginning first or second-generation male flight
 - *Aphytis*: Biweekly in spring and early fall
 - Insecticides: Treat generations 1 or 2 when the scale population is uniform in stage (exception is spirotetramat, which seems to work in fall)
 - Use the selective insecticides that allow natural enemies to survive when you can
- Rotate products to avoid resistance
- Good coverage: 750-1500 gpa/acre (7000-15000 l/ha) (spirotetramat 250 gpa/acre)
- Drive slowly! < 1.5 mph (2.4 kph)
- Postharvest options include: Phosphine fumigation ~48 hours; pressure wash @300 psi; ethyl formate

Acknowledgements

- Beth Grafton-Cardwell
- Lauren Vuicich
- Ping Gu
- Sanjeev Dhungana

